首頁 > 論文 > 光學學報 > 39卷 > 12期(pp:1223005--1)

柔性超薄吸透一體化電磁窗結構設計

Design of Transmission-Absorption-Integrated Electromagnetic Window with Flexibility and Ultrathin Thickness

  • 摘要
  • 論文信息
  • 參考文獻
  • 被引情況
  • PDF全文
分享:

摘要

提出一種柔性超薄吸透一體化電磁窗結構的設計方法,其能夠在寬入射角范圍內吸收任意極化的電磁波,并且在特定頻段內具有幾乎透明的透射窗口。測試結果表明,該結構在4.46 GHz時吸收率為93%,在2.86 GHz時透射率為98%,對應的插入損耗為0.09 dB。樣品的整體厚度為0.288 mm,超薄的厚度使得該結構柔性可彎曲,易與曲面目標共形。在此基礎上,提出寬帶吸透一體化電磁窗結構的設計方法,仿真結果表明,在7.7~12.2 GHz吸收率都能達到90%,在4.35 GHz時透射率為90%,且具有寬入射角特性。

Abstract

This study proposes a novel method for designing an integrated absorption-transmission flexible ultrathin electromagnetic window, which can absorb the unpolarized incident waves over a wide range of angles and is almost transparent at a given frequency band. The experimental results demonstrate 93% absorption at 4.46 GHz and 98% transmittance at 2.86 GHz, indicating an insertion loss of 0.09 dB. The total sample thickness is 0.288 mm, which makes the structure flexible and easy to conform to the curved target. Furthermore, a method for designing a broadband-integrated absorption-transmission electromagnetic window is proposed. The simulation results denote that the absorption can reach 90% at 7.7-12.2 GHz and that the transmittance is 90% at 4.35 GHz. The proposed broadband structure performs appropriately over a wide range of incident angles.

廣告組6 - 調制器
補充資料

中圖分類號:O441.4

DOI:10.3788/AOS201939.1223005

所屬欄目:光學器件

基金項目:重慶市自然科學基金;

收稿日期:2019-07-08

修改稿日期:2019-08-08

網絡出版日期:2019-12-01

作者單位    點擊查看

李莉霞:西南大學物理科學與技術學院, 重慶 400715
李榮強:成都信息工程大學電子工程學院, 四川 成都 610225
王彪:西南大學物理科學與技術學院, 重慶 400715
鄧濤:西南大學物理科學與技術學院, 重慶 400715
韓天成:西南大學物理科學與技術學院, 重慶 400715

聯系人作者:李榮強([email protected]); 韓天成([email protected]);

備注:重慶市自然科學基金;

【1】Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens [J]. Science. 2005, 308(5721): 534-537.

【2】Yamamoto K, Nomura S. Energy compensated mode in a waveguide composed of lossy left-handed metamaterial [J]. Optics Communications. 2007, 276(1): 191-195.

【3】Cheng Z X, Chen L, Zang X F, et al. Ultrathin dual-mode filtering characteristics of terahertz metamaterials with electrically unconnected and connected U-shaped resonators array [J]. Optics Communications. 2015, 342: 20-25.

【4】Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science. 2006, 314(5801): 977-980.

【5】Li G H, Chen X S, Li O P, et al. A novel plasmonic resonance sensor based on an infrared perfect absorber [J]. Journal of Physics D: Applied Physics. 2012, 45(20): 205102.

【6】Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber [J]. Physical Review Letters. 2008, 100(20): 207402.

【7】Tao H, Landy N I, Bingham C M, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization [J]. Optics Express. 2008, 16(10): 7181-7188.

【8】Wen Q Y, Zhang H W, Xie Y S, et al. Dual band terahertz metamaterial absorber: design, fabrication, and characterization [J]. Applied Physics Letters. 2009, 95(24): 241111.

【9】Yao G, Ling F R, Yue J, et al. Dual-band tunable perfect metamaterial absorber in the THz range [J]. Optics Express. 2016, 24(2): 1518-1527.

【10】Wang B X, Zhai X, Wang G Z, et al. A novel dual-band terahertz metamaterial absorber for a sensor application [J]. Journal of Applied Physics. 2015, 117(1): 014504.

【11】Liu Y H, Fang S L, Gu S, et al. Multiband and broadband metamaterial absorbers [J]. Acta Physica Sinica. 2013, 62(13): 134102.
劉亞紅, 方石磊, 顧帥, 等. 多頻與寬頻超材料吸收器 [J]. 物理學報. 2013, 62(13): 134102.

【12】Ye Q W, Liu Y, Lin H, et al. Multi-band metamaterial absorber made of multi-gap SRRs structure [J]. Applied Physics A. 2012, 107(1): 155-160.

【13】Sun L K, Cheng H F, Zhou Y J, et al. Broadband metamaterial absorber based on coupling resistive frequency selective surface [J]. Optics Express. 2012, 20(4): 4675-4680.

【14】Zhang H, Ma Y, Zhang H F, et al. Band enhanced ultra-broadband terahertz absorber based on a high-impedance surface and cavity resonance [J]. Applied Optics. 2018, 57(31): 9208-9214.

【15】Cai Q, Ye R W, Fang Y T. Broadband absorption based on graphene metamaterial composite structure [J]. Chinese Journal of Lasers. 2017, 44(10): 1003005.
蔡強, 葉潤武, 方云團. 石墨烯超材料復合結構的寬帶吸收 [J]. 中國激光. 2017, 44(10): 1003005.

【16】Shen Y, Zhang J Q, Shen L H, et al. Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice [J]. Optics Express. 2018, 26(22): 28363-28375.

【17】Zhou Q, Yin X W, Ye F, et al. Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure [J]. Applied Physics A. 2019, 125(2): 131.

【18】Zhang C, Cheng Q, Yang J, et al. Broadband metamaterial for optical transparency and microwave absorption [J]. Applied Physics Letters. 2017, 110(14): 143511.

【19】Cheng Y Z, Gong R Z, Zhao J C. A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves [J]. Optical Materials. 2016, 62: 28-33.

【20】Zhang J N, Wang G C, Zhang B, et al. Photo-excited broadband tunable terahertz metamaterial absorber [J]. Optical Materials. 2016, 54: 32-36.

【21】Chen X, Xue W R, Zhao C, et al. Ultra-broadband infrared absorber based on LiF and NaF [J]. Acta Optica Sinica. 2018, 38(1): 0123002.
陳曦, 薛文瑞, 趙晨, 等. 基于LiF和NaF的超寬帶紅外吸收器 [J]. 光學學報. 2018, 38(1): 0123002.

【22】Xie T, Chen Z, Ma R Y, et al. A wide-angle and polarization insensitive infrared broad band metamaterial absorber [J]. Optics Communications. 2017, 383: 81-86.

【23】Duan X Y, Chen S Q, Liu W W, et al. Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime [J]. Journal of Optics. 2014, 16(12): 125107.

【24】Costa F, Monorchio A, Manara G. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces [J]. IEEE Transactions on Antennas and Propagation. 2010, 58(5): 1551-1558.

【25】Bian B R, Liu S B, Wang S Y, et al. Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber [J]. Journal of Applied Physics. 2013, 114(19): 194511.

【26】Zhang B X, Zhao Y H, Hao Q Z, et al. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array [J]. Optics Express. 2011, 19(16): 15221-15228.

【27】An S N, Xu H B, Zhang Y L, et al. Design of a polarization-insensitive wideband tunable metamaterial absorber based on split semi-circle ring resonators [J]. Journal of Applied Physics. 2017, 122(2): 025113.

【28】Li L, Xi R, Liu H X, et al. Broadband polarization-independent and low-profile optically transparent metamaterial absorber [J]. Applied Physics Express. 2018, 11(5): 052001.

【29】Han Y, Che W Q, Xiu X, et al. Switchable low-profile broadband frequency-selective rasorber/absorber based on slot arrays [J]. IEEE Transactions on Antennas and Propagation. 2017, 65(12): 6998-7008.

【30】Omar A A, Shen Z X, Huang H. Absorptive frequency-selective reflection and transmission structures [J]. IEEE Transactions on Antennas and Propagation. 2017, 65(11): 6173-6178.

【31】Chen Q, Yang S L, Bai J J, et al. Design of absorptive/transmissive frequency-selective surface based on parallel resonance [J]. IEEE Transactions on Antennas and Propagation. 2017, 65(9): 4897-4902.

【32】Costa F, Monorchio A. A frequency selective radome with wideband absorbing properties [J]. IEEE Transactions on Antennas and Propagation. 2012, 60(6): 2740-2747.

【33】Zhong S M, Wu L J, Liu T J, et al. Transparent transmission-selective radar-infrared bi-stealth structure [J]. Optics Express. 2018, 26(13): 16466-16476.

【34】Li F F, Fang W, Chen P, et al. Transmission and radar cross-section reduction by combining binary coding metasurface and frequency selective surface [J]. Optics Express. 2018, 26(26): 33878-33887.

【35】Huang C, Ji C, Wu X Y, et al. Combining FSS and EBG surfaces for high-efficiency transmission and low-scattering properties [J]. IEEE Transactions on Antennas and Propagation. 2018, 66(3): 1628-1632.

【36】Yue W S, Wang Z H, Yang Y, et al. High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing [J]. Plasmonics. 2016, 11(6): 1557-1563.

【37】Ding F, Cui Y X, Ge X C, et al. Ultra-broadband microwave metamaterial absorber [J]. Applied Physics Letters. 2012, 100(10): 103506.

【38】Long C, Yin S, Wang W, et al. Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode [J]. Scientific Reports. 2016, 6: 21431.

引用該論文

Li Lixia,Li Rongqiang,Wang Biao,Deng Tao,Han Tiancheng. Design of Transmission-Absorption-Integrated Electromagnetic Window with Flexibility and Ultrathin Thickness[J]. Acta Optica Sinica, 2019, 39(12): 1223005

李莉霞,李榮強,王彪,鄧濤,韓天成. 柔性超薄吸透一體化電磁窗結構設計[J]. 光學學報, 2019, 39(12): 1223005

您的瀏覽器不支持PDF插件,請使用最新的(Chrome/Fire Fox等)瀏覽器.或者您還可以點擊此處下載該論文PDF

{ganrao} 北京pk拾赛车全天计划 青海快3图 互联网理财平台有哪些求排名 青海快三的研究 浙江11选推荐 宁夏11选5的台子推荐一个 江西11选5直选走势图 新快赢481遗漏查询 黑龙江快乐十分钟群号 贵州11选五开奖手机版 广东好彩一怎么玩 广西淘宝快三一定牛今天 福建快三官网怎么玩 配资网上上盈官网 江西十一选五 开奖结果 开奖号码 淘股吧十大高手