首頁 > 論文 > 激光與光電子學進展 > 57卷 > 7期(pp:71402--1)

光纖激光深熔焊接小孔形成過程的研究

Research on Formation Process of Keyhole During Fiber Laser Deep Penetration Welding

  • 摘要
  • 論文信息
  • 參考文獻
  • 被引情況
  • PDF全文
分享:

摘要

為研究小孔的形成過程,在光纖激光平板掃描焊接低碳鋼中,采用調制激光出光時間的方式進行實驗。結果表明:小孔的形成過程極為迅速,完整的形成時間在ms量級。低速焊接時,小孔的形成過程包括急速增加、緩慢增加和基本穩定不變三個階段。高速焊接時,小孔的形成過程僅有急速增加過程。進一步實驗結果表明:小孔的形成時間不超過激光焊接特征時間,且激光焊接特征時間隨焊接速度的增加而減小,這是高速焊接時小孔僅有快速形成過程的原因。

Abstract

In order to study the formation process of keyhole, in the fiber laser plate scanning welding of low carbon steel, experiment was carried out by modulating laser light-out time. Experimental results show that the formation process of keyhole is extremely rapid, and the whole formation time of a keyhole is in ms level. In low-speed welding, the formation process of keyhole includes three stages: rapid increase, slow increase, and roughly stabilized stage. During high-speed welding, the formation process of keyhole only includes rapid formation stage. Further experiments show that the formation time of keyhole is not exceeding the characteristic time of laser welding and the characteristic time of laser welding decreases with the increase of welding speed, which together explain why keyhole formation only includes the rapid formation stage in high-speed welding.

Newport宣傳-MKS新實驗室計劃
補充資料

中圖分類號:TG456.7

DOI:10.3788/LOP57.071402

所屬欄目:激光器與激光光學

基金項目:國家自然科學基金、北京市教委科技計劃一般項目;

收稿日期:2019-10-30

修改稿日期:2019-11-13

網絡出版日期:2020-04-01

作者單位    點擊查看

趙樂:北京工業大學激光工程研究院高功率及超快激光先進制造實驗室, 北京 100124
韓雪:北京工業大學激光工程研究院高功率及超快激光先進制造實驗室, 北京 100124
鄒江林:北京工業大學激光工程研究院高功率及超快激光先進制造實驗室, 北京 100124
???/b>:中國中車青島四方機車車輛股份有限公司, 山東 青島 266111
肖榮詩:北京工業大學激光工程研究院高功率及超快激光先進制造實驗室, 北京 100124
武強:北京工業大學激光工程研究院高功率及超快激光先進制造實驗室, 北京 100124

聯系人作者:鄒江林([email protected])

備注:國家自然科學基金、北京市教委科技計劃一般項目;

【1】Li M, Zhang W, Hua X M, et al. Investigation of plasma and metal transfer dynamic behavior during fiber laser GMAW-P hybrid welding [J]. Chinese Journal of Lasers. 2017, 44(4): 0402008.
李敏, 張旺, 華學明, 等. 光纖激光與GMAW-P復合焊接等離子體及熔滴過渡動態特征研究 [J]. 中國激光. 2017, 44(4): 0402008.

【2】Ren Y, Wu Q, Zou J L, et al. Real-time monitoring of coaxial protection fiber laser welding of austenitic stainless steels [J]. Chinese Journal of Lasers. 2017, 44(5): 0502003.
任勇, 武強, 鄒江林, 等. 奧氏體不銹鋼光纖激光同軸?;ず附擁氖凳奔嗖?[J]. 中國激光. 2017, 44(5): 0502003.

【3】Xin J J, Fang C, Song Y T, et al. Autogenous laser welding of 20-mm-thick 316LN stainless steel plate by ultra high power fiber lasers [J]. Chinese Journal of Lasers. 2018, 45(5): 0502007.
信紀軍, 方超, 宋云濤, 等. 20 mm厚316LN不銹鋼板的超高功率光纖激光自熔焊 [J]. 中國激光. 2018, 45(5): 0502007.

【4】Wang J, Wang C M, Meng X X, et al. Study on the periodic oscillation of plasma/vapour induced during high power fibre laser penetration welding [J]. Optics & Laser Technology. 2012, 44(1): 67-70.

【5】Gao M, Chen C, Hu M, et al. Characteristics of plasma plume in fiber laser welding of aluminum alloy [J]. Applied Surface Science. 2015, 326: 181-186.

【6】Zhao L, Tsukamoto S, Arakane G, et al. Influence of welding parameters on weld depth and porosity in high power fiber laser welding [J]. Chinese Journal of Lasers. 2013, 40(11): 1103004.
趙琳, 塜本進, 荒金吾郎, 等. 大功率光纖激光焊接過程中工藝參數對熔深和氣孔的影響 [J]. 中國激光. 2013, 40(11): 1103004.

【7】Zou J L, Yang W X, Wu S K, et al. Effect of plume on weld penetration during high-power fiber laser welding [J]. Journal of Laser Applications. 2016, 28(2): 022003.

【8】Martin B, Loredo A, Pilloz M, et al. Characterisation of CW Nd∶YAG laser keyhole dynamics [J]. Optics & Laser Technology. 2001, 33(4): 201-207.

【9】Jin X Z, Zeng L C, Cheng Y Y. Direct observation of keyhole plasma characteristics in deep penetration laser welding of aluminum alloy 6016 [J]. Journal of Physics D: Applied Physics. 2012, 45(24): 245205.

【10】Katayama S, Kawahito Y, Mizutani M. Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects [J]. Physics Procedia. 2010, 5: 9-17.

【11】Semak V V, Bragg W D, Damkroger B, et al. Transient model for the keyhole during laser welding [J]. Journal of Physics D: Applied Physics. 1999, 32(15): L61-L64.

【12】Wang H Z, Zou Y. Microscale interaction between laser and metal powder in powder-bed additive manufacturing: conduction mode versus keyhole mode [J]. International Journal of Heat and Mass Transfer. 2019, 142: 118473.

【13】Semak V V, Steele R J, Fuerschbach P W, et al. Role of beam absorption in plasma during laser welding [J]. Journal of Physics D: Applied Physics. 2000, 33(10): 1179-1185.

【14】Luo M, Shin Y C. Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding [J]. Optics and Lasers in Engineering. 2015, 64: 59-70.

【15】Zhang Y, Chen G Y, Wei H Y, et al. A novel “sandwich” method for observation of the keyhole in deep penetration laser welding [J]. Optics and Lasers in Engineering. 2008, 46(2): 133-139.

【16】Fujinaga S, Takenaka H, Narikiyo T, et al. Direct observation of keyhole behaviour during pulse modulated high-power Nd∶YAG laser irradiation [J]. Journal of Physics D: Applied Physics. 2000, 33(5): 492-497.

【17】Courtois M, Carin M, Masson P L, et al. A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding [J]. Journal of Physics D: Applied Physics. 2013, 46(50): 505305.

【18】Kaplan A F H, Matti R S. Absorption peaks depending on topology of the keyhole front and wavelength [J]. Journal of Laser Applications. 2015, 27(S2): S29012.

引用該論文

Zhao Le,Han Xue,Zou Jianglin,Zheng Kai,Xiao Rongshi,Wu Qiang. Research on Formation Process of Keyhole During Fiber Laser Deep Penetration Welding[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071402

趙樂,韓雪,鄒江林,???肖榮詩,武強. 光纖激光深熔焊接小孔形成過程的研究[J]. 激光與光電子學進展, 2020, 57(7): 071402

您的瀏覽器不支持PDF插件,請使用最新的(Chrome/Fire Fox等)瀏覽器.或者您還可以點擊此處下載該論文PDF

{ganrao} 平特一肖买一百课中多少 分分彩开奖计划 正规的网络赚钱方式 pc蛋蛋走势图 欢乐捉鸡麻将下载 捕鱼达人3旧版本去哪里下载 南粤36选7更新开奖结果 南宁麻将十三幺怎么胡 网络赚钱赚钱 辽源心悦麻将 捕鱼达人赢红包现金 网游赚钱项目 波克棋牌下载官方下 捕鱼王者上下分 十一运夺金遗漏查询 四川麻将血战到底下载四人