首頁 > 論文 > 中國激光 > 47卷 > 2期(pp:207028--1)

回音壁模式光學微腔識別細胞類型

Identifying Single Cell Types via Whispering Gallery Mode Optical Microcavities

  • 摘要
  • 論文信息
  • 參考文獻
  • 被引情況
  • PDF全文
分享:

摘要

回音壁模式是光子在一個準二維平面內運動,并不斷地在微腔邊界發生全反射而不折射出腔的一種光學模式,具有高的Q值和小的模式體積,對外部環境的變化極其敏感。利用回音壁模式可以使寬帶熒光實現窄光譜的激光輸出。利用摻雜DG(dragon green)熒光染料的聚苯乙烯微球作為回音壁模式光學微腔,通過細胞的吞噬功能,使熒光微球到達細胞內部,利用納秒脈沖激光進行泵浦,實現了細胞內的回音壁模式激光輸出。與在純水環境中的激光輸出相比,細胞內熒光微球回音壁模式的諧振峰發生了紅移,且紅移量與細胞類型有關,說明可以用回音壁模式實現細胞種類的無標記識別。

Abstract

Whispering gallery mode is a type of optical mode where photons move in a quasi-two-dimensional plane, and the total reflection occurs at the boundary of the microcavity without reflecting out of the cavity. This mode has a high Q value and small mode volume, and it is extremely sensitive to changes in the surrounding environment. A broadband fluorescence can be transformed into narrow-spectrum laser output by using the whispering gallery mode. In this paper, polystyrene microspheres doped with the dragon green fluorescent dye are used as whispering gallery mode optical microcavity. Through the phagocytosis of cells, the fluorescent microspheres reach inside cells and then are pumped by nanosecond pulsed laser to achieve the output of whispering gallery mode laser in cells. In comparison with the laser output in the pure-water environment, a redshift of the intracellular fluorescent microsphere whispering gallery mode resonance emission can be observed, and the redshift is related to cell type; therefore, it can be used for unlabeled identification of cell type.

Newport宣傳-MKS新實驗室計劃
補充資料

中圖分類號:O437

DOI:10.3788/CJL202047.0207028

所屬欄目:生物醫學光子學與激光醫學

基金項目:國家自然科學基金、國家重點研發計劃、北京市自然科學基金;

收稿日期:2019-10-10

修改稿日期:2019-11-26

網絡出版日期:2020-02-01

作者單位    點擊查看

王亞平:北京市激光應用技術工程技術研究中心, 跨尺度激光成型制造技術教育部重點實驗室,北京工業大學激光工程研究院, 北京 100124
王秀翃:北京市激光應用技術工程技術研究中心, 跨尺度激光成型制造技術教育部重點實驗室,北京工業大學激光工程研究院, 北京 100124
王璞:北京市激光應用技術工程技術研究中心, 跨尺度激光成型制造技術教育部重點實驗室,北京工業大學激光工程研究院, 北京 100124

聯系人作者:王秀翃([email protected]); 王璞([email protected]);

備注:國家自然科學基金、國家重點研發計劃、北京市自然科學基金;

【1】Fan X D, Yun S H. The potential of optofluidic biolasers [J]. Nature Methods. 2014, 11(2): 141-147.

【2】Lacey S, White I M, Sun Y Z, et al. Versatile opto-fluidic ring resonator lasers with ultra-low threshold [J]. Optics Express. 2007, 15(23): 15523-15530.

【3】Yang G, White I M, Fan X D. An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides [J]. Sensors and Actuators B: Chemical. 2008, 133(1): 105-112.

【4】Vasdekis A E, Town G E, Turnbull G A, et al. Fluidic fibre dye lasers [J]. Optics Express. 2007, 15(7): 3962-3967.

【5】Ta V D, Caixeiro S, Fernandes F M, et al. Microsphere solid-state biolasers [J]. Advanced Optical Materials. 2017, 5(8): 1601022.

【6】Vahala K J. Optical microcavities [J]. Nature. 2003, 424(6950): 839-846.

【7】Guan G, Arnold S, Otugen M V. Temperature measurements using a microoptical sensor based on whispering gallery modes [J]. AIAA Journal. 2006, 44(10): 2385-2389.

【8】Himmelhaus M, Francois A. In-vitro sensing of biomechanical forces in live cells by a whispering gallery mode biosensor [J]. Biosensors and Bioelectronics. 2009, 25(2): 418-427.

【9】Schliesser A, Kippenberg T J. Cavity optomechanics with whispering-gallery mode optical micro-resonators[M]. ∥Arimondo E: , 2010, 58: 207-323.

【10】Haroche S, Kleppner D. Cavity quantum electrodynamics [J]. Physics Today. 1989, 42(1): 24-30.

【11】Vollmer F, Arnold S. Whispering-gallery-mode biosensing: label-free detection down to single molecules [J]. Nature Methods. 2008, 5(7): 591-596.

【12】Vollmer F, Braun D, Libchaber A, et al. Protein detection by optical shift of a resonant microcavity [J]. Applied Physics Letters. 2002, 80(21): 4057-4059.

【13】Arnold S, Khoshsima M, Teraoka I, et al. Shift of whispering-gallery modes in microspheres by protein adsorption [J]. Optics Letters. 2003, 28(4): 272-274.

【14】Zhang Y X, Han D Y, Zhu K, et al. Wavelength shift of whispering-gallery-mode fiber laser caused by fiber cladding refractive index [J]. Chinese Journal of Lasers. 2009, 36(3): 691-694.
張遠憲, 韓德昱, 祝昆, 等. 包層介質折射率引起的回音壁模式光纖激光波長漂移 [J]. 中國激光. 2009, 36(3): 691-694.

【15】Humar M, Yun S H. Intracellular microlasers [J]. Nature Photonics. 2015, 9(9): 572-576.

【16】Schubert M, Steude A, Liehm P, et al. Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking [J]. Nano Letters. 2015, 15(8): 5647-5652.

【17】Wu X Q, Chen Q S, Xu P Z, et al. Nanowire lasers as intracellular probes [J]. Nanoscale. 2018, 10(20): 9729-9735.

【18】Fikouras A H, Schubert M, Karl M, et al. Non-obstructive intracellular nanolasers [J]. Nature Communications. 2018, 9: 4817.

【19】Gorodetsky M L, Ilchenko V S. Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes [J]. Journal of the Optical Society of America B. 1999, 16(1): 147-154.

【20】Born M, Wolf E. Principles of optics[M]. Yang J S: Transl, 7th ed. Beijing: Science Press, 2004, 1-6.
玻恩. M, 沃爾夫 E. 光學原理[M]. 楊葭蓀: 譯, 7版. 北京: 科學出版社, 2004, 1-6.

【21】Chiasera A, Dumeige Y, Féron P, et al. Spherical whispering-gallery-mode microresonators [J]. Laser & Photonics Reviews. 2010, 4(3): 457-482.

引用該論文

Wang Yaping,Wang Xiuhong,Wang Pu. Identifying Single Cell Types via Whispering Gallery Mode Optical Microcavities[J]. Chinese Journal of Lasers, 2020, 47(2): 0207028

王亞平,王秀翃,王璞. 回音壁模式光學微腔識別細胞類型[J]. 中國激光, 2020, 47(2): 0207028

您的瀏覽器不支持PDF插件,請使用最新的(Chrome/Fire Fox等)瀏覽器.或者您還可以點擊此處下載該論文PDF

{ganrao}